1. For the Adams Bashforth second order method

$$u_{n+1} = u_n + \frac{1}{2}h(3u'_n - u'_{n-1})$$

- (a) Compute a table of the numerical values of the σ -roots of the 2nd order Adams Bashforth method (AB2) when $\lambda = i$.
- (b) Take h in intervals of 0.05 from 0 to 0.80 and compute the absolute values of the roots to at least 6 places.
- (c) Plot the trace of the roots in the complex σ -plane and draw the upper right hand quadrant of the unit circle on the same plot.
- (d) Repeat the above for the RK2 method.
- 2. Consider the above two methods. Use a step size of 0.2 and advance 100 time steps. At the end of this interval:
 - (a) What is the magnitude of the global error in amplitude?
 - (b) What is the magnitude of er_{ω} ?
 - (c) On the basis of this information, which is the best method to use for a pure convection problem?
- 3. Consider the PDE

$$\frac{du}{dt} + a\frac{du}{dx} = \nu \frac{d^2u}{dx^2}$$

in which $\nu > 0$ and $-\infty \le a \le \infty$. Use the 3-pt central difference scheme for the second derivative in space and use the approximation

$$(\delta_x u)_j = \frac{1}{\Delta x} (u_{j+1} - u_j)$$

for the first derivative approximation in space.

- (a) Write the banded matrix difference operator for the combined difference approximations.
- (b) Find λ_m for the resulting ODE.
- (c) What is the range of a for which the method is inherently stable?
- 4. The widely known Lax–Wendroff method when appplied to the model equation $\frac{du}{dt} + a\frac{du}{dx} = 0$ gives:

$$u_j^{n+1} = u_j^n - \frac{1}{2}C_n(u_{j+1}^n - u_{j-1}^n) + \frac{1}{2}C_n^2(u_{j+1}^n - 2u_j^n + u_{j-1}^n)$$

where C_n , known as the CFL number, is $a\Delta t/\Delta x$. Using the Fourier or von Neumann stability analysis, find the range of C_n for which the method is stable.